- Recall counection

1 lea-way of diverentinating rections

- Convettion on teusors and total coveriont derivatine
- Disfeveluce of 2 connections
- Iud \&und Form Rur a nub-bondle (oual \exists of connertions)
- Propertices of the tougactical conneotion:
- wetric
- Equmectric

Consaquances:
(I) commates wl veristuy" (onering

$$
\nabla_{i} X^{j}=g^{j k} \nabla_{i} X_{k}
$$

(2) If θ_{i} is a 1-form,
then $\nabla \theta$ agmuetric $\Longleftrightarrow \theta$ dosed.

$$
\tau\left(\nabla_{x} \theta\right)(c)=x(\theta(c))-\theta\left(\nabla_{x} \tau\right)
$$

- Thim J! \& L.C counection

$$
\begin{aligned}
& \Gamma X\langle Y, z\rangle=\left\langle\nabla_{x} \psi, z\right\rangle+\left\langle Y, \nabla_{x} z\right\rangle \\
&=\left\langle\nabla_{x} \psi, z\right\rangle+\left\langle Y_{1} \nabla_{x} x\right\rangle+\left\langle Y_{1}(x, z]\right\rangle \text { ecydic } \\
& \text { add } 2 \\
& \text { auldrat th }
\end{aligned}
$$ ald 2 subbruct thud

- $F\left[E_{i}, \epsilon_{j}\right]=\epsilon_{k} C_{i j}^{k}$
then

$$
\Pi_{i j}^{\text {ren }}=\frac{1}{2}\left(C_{i j}^{k}-C_{i k}^{j}-C_{j k}^{i}\right)
$$

Geovetry

$$
s \leq \pi^{3}
$$

$\alpha: I \rightarrow S$ a geodesic if $k y=\left\langle\tau^{\prime}, v\right\rangle=0$
i.e. $\pi^{t} \bar{\nabla}_{2_{t}} \alpha^{\prime}=0$ (arkouiny unt gread)
i.e. $\nabla_{\partial_{t}} \alpha^{\prime}-O$ coucection on $7 M$

Dein $\alpha: \perp \rightarrow\left(M, D_{1}\right)$ is a geodesic if $\nabla_{t} \alpha^{\prime}=0$.
Oheraration. geodesics deternice $\prod_{a}^{c} T^{a} T^{b} \leftrightarrow$ symuctric post at T

- Lo not detornine akece-sym. part

Now angoke D 'is $\nabla^{\text {c.c. }}$

Dfr A smooth mag $\alpha(S)(t):(-r, r) \times 1 \rightarrow S$ is a computly supported variution of the corve $\alpha(0)$ if

- $\alpha(G)$ is a regular paramotrizud corne in S for all $\varepsilon \in(-\varepsilon, \varepsilon)$
- outside some $K \subset C I, \quad \alpha(\sigma(t)=\alpha(0)(t)$

Prap Godesics in S ave critical points of the length with vespect to compact variations

$$
\left\langle\nabla_{s} \alpha_{t}, T\right\rangle
$$

$T \frac{d}{d s} \int_{I} \sqrt{\left\langle\alpha_{t}, \alpha_{t}\right\rangle} d t=\int_{I} \frac{\left\langle\alpha_{t s}, \alpha_{t}\right\rangle}{w_{t} \mid} d t=\int_{I}\left\langle\alpha_{s t}, T\right\rangle d t \quad\left\langle\nabla_{t} k_{t}, T\right\rangle$

$$
\frac{d}{d s} L(\alpha(s))=\int_{I} \frac{d}{d t}\left\langle\alpha_{s_{1}} T\right\rangle d t-\int_{I}\left\langle\alpha_{s_{1}} T^{\prime}\right\rangle d t
$$

Since $\alpha_{s} \subseteq T S$ for enery voricotion, this is zuro fur every voricotion exactly when T^{\prime} is porallel to N, i.e. $\left(\tau^{\prime}, v\right)=0$

$$
\text { i.e. } k_{y}=0
$$

- Counections ond ODES

$$
\begin{aligned}
& \text { Covections and oDts } \\
& (G, D), F:\left(F,-F_{r}\right] \text { a Brove } F: \mathbb{R}^{u} \rightarrow E_{1} \text {. }
\end{aligned}
$$

let $D F_{i}=F_{i} \dot{A} \dot{i}_{i}$ be the costss of the comestion in this Rurne

$$
\begin{aligned}
& \nabla F_{i}=F_{i}^{i} \\
& \nabla\left(F_{i} f^{i}\right)=F_{i}\left(l f^{i}+A_{i}^{i} f^{j}\right) \\
& F^{+} \nabla=d+A
\end{aligned}
$$

A second Fove $\widetilde{F}_{j}=F_{i}\left(G^{-1}\right)_{j}^{i}$ is flat if

$$
\begin{gathered}
d G^{-1}+A G^{-1}=0 \\
-G^{-1} d G G^{-1}+A G^{-1}=0 \\
A=G^{-1} d G
\end{gathered}
$$

- Then (beneabiving last tine) A Elal Rove exists if $d A+A M A=0$.
- Retarning to a susuecin \mathbb{R}^{3}
(1) $\mathbb{R}^{3}=T S+N S$
(2) Torrion-sree related to integreating all the way to \mathbb{R}^{3}, wich we iguored bebare.
- Hession a concerity
- Gederics a quallel trougart
- The gealeric aquation

Den The corructive of $\nabla R \in \Omega^{2}($ Gud $G)$

$$
\Omega_{a b} c=\nabla_{a} \nabla_{b} c-\nabla_{b} \nabla_{a} c
$$

Salc curcuatue of $d+A$ on triu boudle is

$$
R=l A+A \sim A .
$$

Geverealizution of lat time to n limins \Longrightarrow
Thum $\exists F w / F^{\prime} d F=A$ if $R_{*}=0$.
then (G,T) has a local basis of flat cettions $E^{\nabla}=0$.

Returning to a sonfue in R^{3}

$$
\begin{aligned}
\left(\overline{\mathbb{R}^{3}}, \bar{\nabla}\right) & =T S+N S . \\
\bar{\nabla}_{x}^{\prime}(& =\nabla_{x}^{Y}\left(+B_{x}^{\prime} T\right.
\end{aligned}
$$

$$
\bar{R}=0
$$

in local prove for $\left.T S+\begin{array}{l}\text { trim } \\ \text { prone } B 6,\end{array}\right) \bar{\nabla}=d+\bar{T}$ where

$$
\bar{T}=\left[\begin{array}{cc}
T & -B \\
h & 0
\end{array}\right]^{\langle N\rangle} \quad B \in \Omega^{\prime}(\operatorname{Han}(N, \tau)) \simeq \operatorname{\epsilon ud}(\tau)
$$

$$
\begin{aligned}
d \bar{\Gamma}+\bar{\Gamma} \sim \bar{\Gamma} & =\left[\begin{array}{cc}
d \vec{\Gamma} \sim \sim \Gamma-B \sim h & -d B-\Gamma \sim B \\
2 h+h \sim \Gamma & 0
\end{array}\right] \\
& =0
\end{aligned}
$$

(Gauss a (oduzzi equations)

Integrable $\rightleftharpoons d A \sim A \sim A+O$
to a Prove.
Put I deinged: when is a frove $F: T M \rightarrow \mathbb{R}^{3}$ integrable to a suame?

Nequice $d F=O$ i.e.

$$
\bar{\nabla}_{x}(F(y))-\bar{\nabla}_{y}(F(y))-F([y i])=0
$$

i... $\pi^{N}=0$ and $\pi^{\top}=0$
(1)
(1) $h(x, y)=h(y, x)$

$$
A_{12}^{\cdot}=\dot{A}_{21}^{\cdot}
$$

(2) $\left.\nabla_{x} y-\nabla_{y} x-[x i]\right]=0$

Torkion
Uly"dontor"?

- V trougrated by klow st $\omega \quad([0, \omega]=0)$

$$
\Rightarrow \nabla_{w} V=0
$$

$$
\begin{aligned}
\exists \psi(t, s) \quad 4.6 \cdot \frac{\partial \psi}{\partial t} & =v \\
\frac{\partial \psi}{\partial s} & =w
\end{aligned}
$$

no द्रिvaling

$$
\text { Let's agoue } \nabla_{v} v=0 \text {, so } w^{2} v \text { alwags }
$$ as orconed to

"
(ookn' live" is neind tho \qquad
if you walk alony V, w lootes quaralel.

