Medi causation
(In - wing of little utsubing sections
(another on tensors and total covariant larivative
. Consider on tensors and total covariant larivative
. The tensor on endotonale (and I of connections)
. The tensor on endotonale (and I of connections)
. The tensor of endoted connection:
- under:
- under:
- under:
Consequences:
(1) communics w/ vectoring (causaring

$$\nabla_{i} \chi^{i} = g^{ik} \nabla_{i} \chi_{k}$$

(1) \in municipality (causaring
 $\nabla_{i} \chi^{i} = g^{ik} \nabla_{i} \chi_{k}$
(2) $\models \Theta_{i}$ is a 1-born,
then $\nabla \Theta$ symmetric to 0 decod.
 $F(\nabla_{i} O)(\chi) = \chi(\Theta(\chi)) - \Theta(\Omega_{k}\chi)$
. Thus I. S. LC connection
 $F \chi(\chi, Z) = (O_{i}\chi, Z) - (Y, N, Z)$
 $= (D_{i}\chi, Z) + (Y, N, X) + (X, (X, Z)) - cyclic
all 2
content time
cot: $T_{ij}^{k} = \frac{1}{2}g^{ik}(\partial_{i}g_{1k} + \partial_{j}g_{1k} - \partial_{z}g_{2})$
. $F(G_{i}, G_{i}) = G_{k}C_{ij}^{k}$
then
 $T_{ij}^{k} = \frac{1}{2}(C_{ij}^{k} - C_{ik} - C_{ik})$$

Now syrace D'is D'.c.

Dir A smooth well
$$\alpha(G_1(L): (-e,L) \times I \longrightarrow S$$
 is a comparting
supported variation of the corre $\alpha(G)$ if
• also is a vegular parametrized come in S For all $\alpha \in (-e, E)$
• outside some K C C I, $\alpha(G_1(L)) = \alpha(G_1(L))$
Prop Geodesics in S are critical points of the length with
respect to compart variations (T_{SKL}, T)
 $f_{SS}(T_{KULPLD}, dL) = \int (\underline{A}_{LS}, \underline{A}_{L}) \underline{A}_{L} = \int (\alpha_{SL}, T) \underline{A}_{L} + (T_{L}) + (T_{L}) \underline{A}_{L} + (T_{L})$

Since NSE 15 for every vooration, this is but set every voricition exactly when T' is possible to N, i.e. (T; N=0 i.e. Kg=0 J

- · Kegsion concerty · Geolegics gevallel from part
- . The geologic equation

Den The convolve of
$$\nabla$$
 R = $\mathcal{D}^2(Guch E)$
 $\mathcal{D}_{ab}^{c} c = \nabla_a \nabla_b c - \nabla_b \nabla_a c$.
Calce convolve of det A on triv boudle is
 $\mathcal{D}_{=} = dA + A \wedge A$.
Generalizention of bot time to n during =
Then $\exists F w / F'dF = A$ if $\mathcal{D}_{+} = O$.
Then $\exists F w / F'dF = A$ if $\mathcal{D}_{+} = O$.
Then $(G_1 \overline{v})$ has a local basis of Plat gations = $\mathbb{R}^{\bullet} = O$.

$$\begin{aligned} \text{Advancing to a surface in } \mathbb{P}_{3}^{3} \\ (\mathbb{P}_{3},\overline{n}) &= TS + NS. \\ \overline{D}_{x}^{i}(: \nabla_{x}^{i}(: \nabla_{x}^{i}(: B_{x}^{i})) \\ \overline{D}_{x}^{i}(: \nabla_{x}^{i}(: B_{x}^{i})) \\ in \text{ local Prove } For TS + trive \\ \text{Rower } For FS + trive \\ (N) \\ \overline{D}_{x}^{i}(: D_{x}^{i}(: D_{x}^{i}(: D_{x}^{i})) \\ (N) \\ \overline{D}_{x}^{i}(: D_{x}^{i}(: D_{x}^{i}(: D_{x}^{i})) \\ (N) \\ \overline{D}_{x}^{i}(: D_{x}^{i}(: D_$$

((Jaussa (obuzzi equations)

Integrable
$$\rightleftharpoons dA \cdot A \cdot A \cdot A \cdot O$$

to a showe.
Prot I deliged: when is a from F:Th $\longrightarrow \mathbb{P}^3$
integrable to a subtrue?
Negarine $dF = O$ i.e.
 $\nabla_x F(Y) - \nabla_y (F(Y)) - F((Y_1)) = O$
i.e. $T_x = O$ and $T^T = O$
 O
 O
 O
 (O) $h((Y_1)) = h(Y_1)$
 (O) (O)
 (O) (O)
 (O)
 (O) (O)
 (O)
 (O)
 (O) (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)
 (O)

